Evaluation of thermal comfort and energy performance of a case study in vernacular architecture of Cyprus

A new conference paper by University of Cyprus – FOSS Research Centre for Sustainable Energy – was presented at the PLEA 2020 conference – Sustainable Architecture and Urban Design.

The conservation and rehabilitation of buildings of vernacular architecture is a sustainable approach, not only because it leaves a small ecological footprint, compared to the erection of new buildings, but also due to the passive bioclimatic design features integrated in vernacular buildings. This paper will investigate the thermal performance of vernacular architecture in lowland area in diverse climatic contexts.

HYBUILD demo site in Aglantzia, Cyprus

The findings of the current research are based on an on-site investigation carried out in a representative vernacular building that is going to be upgraded to a hands-on technology exhibition area of renewable energy systems complimented with visual means to enhance the experience of visitors under a Research European Programme (Horizon 2020). The current study provides a basis for the formulation of a site-specific design strategy to improve thermal conditions and achieve energy conservation within lowland constructions in diverse climatic conditions. Understanding and analysing the thermal behaviour of these spaces is the first step towards this strategy. The quantitative analysis reveals the various challenges faced and opportunities provided by lowland structures and contributes to informing current design policies. Moreover, the analysis will inform the sizing of the technical systems throughout the year.

Read the full paper here

HYBUILD Austrian pilot

Work is ongoing at the Langenwang Austrian pilot, to prepare the installation of the HYBUILD hybrid storage system.

The continental climate system will be installed at this pilot site. The maximum heating power consumption expected after the foreseen retrofitting operations is 10 kW. The following technologies will be applied in the building: PV, PCM thermal latent storage, Heat pump.

Drone flight for PV planning
Cooling ceiling installation
Electrical preparation for PV integration
Preparation for the heat pump outdoor unit
Technical room entrance

Evaluation of in-situ coated porous structures for hybrid heat pumps

One of the main limitations for the wide diffusion of sorption systems, either as stand-alone and in hybrid configurations, is the low heat transfer inside the adsorber, as well as the low volumetric cooling power.

In this context, HYBUILD partners (CNR ITAE, AKG, Fahrenheit and Mikrometal) have just released a new scientific paper which reports the experimental activity on four different advanced configurations for the adsorber, based on microchannel heat exchangers where the gap between the channels is filled with porous structures where zeotypes of SAPO-34 family were synthetized.

The porous structures evaluated are high-density fins, two different aluminium foams and compressed chips from the waste of aluminium machining. The sorption dynamic and cooling power density of each structure were measured through a Gravimetric Large Temperature Jump testing apparatus.

Detail of the structures used in the adsorbers. (a) chips; (b) foam#2

The results obtained showed that the best-performing configuration is the one with high-density fins, that, for a 90/30/20 °C cycle showed a Specific Cooling Power up to 1.1 kW/kg. The other structures exhibit a much slower adsorption process, corresponding to power densities of about 0.3 kW/kg. The results were used for sizing a full-scale adsorber, whose expected Volumetric Cooling Power is 500 kW/m3.

Full-scale adsorber HEX

Read the full paper here.

Performance Study of Direct Integration of PCM into an Innovative Evaporator of a Simple Vapour Compression System

A new paper presenting HYBUILD outcomes has just been released by the GREiA Research Group, of the Universitat de Lleida in the Applied Sciences journal.

This paper experimentally investigates the direct integration of 3.15 kg of phase change materials (PCM) into a standard vapour compression system of variable cooling capacity, through an innovative lab-scale refrigerant-PCM-water heat exchanger (RPW-HEX), replacing the conventional evaporator. Its performance was studied in three operating modes: charging, discharging, and direct heat transfer between the three fluids. In the charging mode, a maximum energy of 300 kJ can be stored in the PCM for the cooling capacity at 30% of the maximum value. By doubling the cooling power, the duration of charging is reduced by 50%, while the energy stored is only reduced by 13%. In the discharging mode, the process duration is reduced from 25 min to 9 min by increasing the heat transfer fluid (HTF) flow rate from 50 L·h−1 to 150 L·h−1. In the direct heat transfer mode, the energy stored in the PCM depends on both the cooling power and the HTF flow rate, and can vary from 220 kJ for a cooling power at 30% and HTF flow rate of 50 L·h−1 to 4 kJ for a compressor power at 15% and a HTF flow rate of 150 L·h−1. The novel heat exchanger is a feasible solution to implement latent energy storage in vapour compression systems resulting to a compact and less complex system.

Read the full paper at https://doi.org/10.3390/app10134649

European Energy Efficiency Conference 2021

The European Energy Efficiency Conference 2021 shows how we can make a green recovery happen in practice and how energy efficiency is a cornerstone of this deep transformation.

What is it all about?

Europe has the ambitious goal of becoming the first climate neutral continent by 2050. The Green Deal and the EU Climate Law are first concrete steps. The current economic challenges are also an opportunity to accelerate decarbonisation and to create a fairer society and a more competitive economy.

In 2021, the conference – which attracts over 400 participants from over 50 countries each year – shows how we can make a green recovery happen in practice and how energy efficiency as an investment engine can contribute to this deep transformation.

HYBUILD is preparing a workshop at the 2021 European Energy Efficiency Conference in which the first results from its pilot sites, which are demonstrating the impact of the overall hybrid storage system, will be presented.

Read more about the event at https://www.wsed.at

An innovative approach to Thermal Energy Storage and Self-Sufficiency in Buildings

The use of Thermal Energy Storage (TES) in buildings in combination with space heating, domestic hot water and space cooling has recently received much attention. End of 2019, the CHESS-SETUP H2020 project organised a webinar in which HYBUILD participated together with two other research projects RELaTED and SunHorizon.

The presentation from the Webinar is accessible at the following link : https://zenodo.org/record/3903389#.XvEOrS2w3OR

Evaluation of the State of Charge of a Solid/Liquid Phase Change Material in a Thermal Energy Storage Tank

A new scientific paper published by the GREiA Research Group (Universitat de Lleida) and the Center for Energy of AIT (Austrian Institute of Technology) has been released on the Energies journal.

Monitoring of the state of charge of the thermal energy storage component in solar thermal systems for space heating and/or cooling in residential buildings is a key element from the overall system control strategy point of view. According to the literature, there is not a unique method for determining the state of charge of a thermal energy storage system that could generally be applied in any system. This contribution firstly provides a classification of the state-of-the-art of available techniques for the determination of the state of charge, and secondly, it presents an experimental analysis of different methods based on established sensor technologies, namely temperature, mass flow rates, and pressure measurements, tested using a lab-scale heat exchanger filled with a commercial phase change material for cooling applications.

Schematic view of the experimental set-up

The results indicate that, depending on the expected accuracy and available instrumentation, each of the methods studied here can be used in the present application, the deviations between the methods generally being below 20%. This study concludes that a proper combination of two or more of these methods would be the ideal strategy to obtain a more reliable and accurate estimation of the state of charge of the latent heat thermal energy storage. 

Read the full paper at : https://doi.org/10.3390/en13061425

Selection of the Appropriate Phase Change Material for Two Innovative Compact Energy Storage Systems in Residential Buildings

New research results from the HYBUILD project have been published by University of LleidaGREiA Research Group – in the Applied Sciences journal .

The implementation of thermal energy storage systems using phase change materials to support the integration of renewable energies is a key element that allows reducing the energy consumption in buildings by increasing self-consumption and system efficiency. The selection of the most suitable phase change material is an important part of the successful implementation of the thermal energy storage system. The aim of this paper is to present the methodology used to assess the suitability of potential phase change materials to be used in two innovative energy storage systems, one of them being mainly intended to provide cooling, while the other provides heating and domestic hot water to residential buildings. The selection methodology relies on a qualitative decision matrix, which uses some common features of phase change materials to assign an overall score to each material that should allow comparing the different options. Experimental characterization of the best candidates was also performed to help in making a final decision. The results indicate some of the most suitable candidates for both systems, with RT4 being the most promising commercial phase change material for the system designed to provide cooling, while for the system designed to provide heating and domestic hot water, the most promising candidate is RT64HC, another commercial product.

Read the full article at : https://doi.org/10.3390/app10062116

Keywordsthermal energy storage (TES)phase change material (PCM)heating and coolingmaterial selectionselection methodology

HYBUILD in a webinar on European funding for research and innovation

HYBUILD partner R2M Solution is organising a series of online webinars called ‘R2M Online Academy’.

On Tuesday 5th May 2020, HYBUILD was presented within a session focused on how to get involved in Horizon 2020 European collaborative research and innovation projects. The presentation detailed available funding and their mechanisms.

R2M Solution presenting HYBUILD in a webinar on European R&I

This webinar was organised in Italian but it might be replicated in English and other languages in the upcoming weeks.

The webinar has been recorded and is available to watch here.

Experimental study of a fin-and-tube heat exchanger working as evaporator in subatmospheric conditions

CNR-ITAE, Valeria Palomba & Andrea Frazzica have just released a new scientific paper which presents research results from HYBUILD published in Applied Thermal Engineering Journal.

The paper shows the potentialities of the latest addition to CNR ITAE’s self-developed lab systems: a testing bench for studying evaporation under vacuum in relevant scale heat exchangers for heat pump and refrigeration.

The paper is accessible here