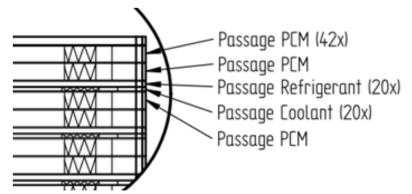

Experimental evaluation of a heat pump-latent storage system for increasing renewable share of the residential stock

ENERSTOCK 2021 V. Palomba^{1*}, S. Varvagiannis², E. Monokrousou², B. Nitsch³, N. Barmparitsas⁴, A. Bonanno¹, G.E. Dino¹, A. Leontaritis², A. Strehlow³, S. Karellas², A. Frazzica¹, L.F. Cabeza⁵

TESTED: R410A DC-DRIVEN HEAT PUMP + THF SYSTFM LATENT STORAGE


1: condenser, 2: standard evaporator, 3: compressor, 4: liquid receiver, 5: expansion valve, 6: latent storage

V. Palomba

TEST RESULTS IN A NUTSHELL

FOCUS ON: LATENT STORAGE

Three-fluid aluminium heat exchanger. PCM used: RT4 commercial paraffin with nominal melting point of 4°C

Performance maps under different operating modes:

heat pump 2.5 < EER < 7.5,

- latent storage up to 3 kWh, efficiency >80%
- Discharge power up to 9 kW

Our published papers: read them if you want to know more!

¹CNR ITAE, Messina, Italy ²National Technical University of Athens, Greece ³AKG GmbH, Germany ⁴Daikin Air conditioning Greece, ⁵GREiA Research Group, Universitat de Lleida, Spain

European Union's Horizon 2020 research and innovation

programme under grant agreement n° 768824.