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Publishable executive summary 

This document reports about deliverable D4.3 – “HYBUILD Optimised Building Management 
System” in the context of HYBUILD, an EC co-funded project which aims at developing two 
innovative compact hybrid electrical/thermal storage systems for stand-alone and district 
connected buildings, both in Mediterranean and Continental climatic conditions. In particular, 
this deliverable addresses the implementation of an optimised control of the HYBUILD system 
energy flows in the residential buildings by considering internal and external requests.  

The main aim of this document is to provide a detailed description of the energy management 
approaches adopted for the Building Energy Management System (BEMS) proposed within the 
HYBUILD project. It presents the procedures and the features of the two control systems 
developed for addressing: 

• the optimisation of the energy management for the provisioning of flexibility services to 
grid operators (provided by ENG);  

• the minimisation of the energy operational costs (provided by UDL). 

The two implemented optimisation processes adopt two different methods and pursue different 
objectives. 

The optimiser provided by ENG relies upon a multi-objective optimisation framework able to 
handle two or more objectives at the same time; this has been performed by the 
implementation of a heuristic algorithm, the Non-dominated Sorting Genetic Algorithm II (NSGA 
II). The appointed objectives are: the provision of flexibility services to the grid operators, the 
economic management of the energy operations, and the users’ comfort satisfaction. 

UDL’s control strategy implements a reinforcement learning technique, a Deep Learning Control 
(DLC) algorithm characterised by a three-layer fully connected network. This tool focuses on the 
internal cost management of the energy operation of each device inside the building for 
reducing costs. 

This report shows how it is possible to adopt different approaches for addressing the same 
energy operations from two different standpoints. Mostly, the reduction of the costs related to 
the energy flows among the systems and devices inside the building is always taken into account. 
The comfort of the building inhabitants is always one of the most referenced constrain of the 
processes, as well. In this case, the solutions proposed allow also to leverage on the storage 
systems, in particular the electrical battery and the latent storage, not only for handling internal 
energy management but also for addressing requests from electric and district heating grid 
operators for the provision of a flexibility service. This is part of a wider framework of Demand 
Response (DR) implementation in the field of building energy management. 

In this view, a typical DR mechanism has been envisioned within the BEMS optimiser: a grid 
operator sends a flexibility service request signal that triggers the external request optimisation 
module of the BEMS. This signal consists of a power profile to be followed by the building 
controlled by the BEMS whilst absorbing electricity or district heating; moreover, a reward value 
is provided with it, in order to encourage economically the Energy Manager of the building 
because this reward corresponds to the economic prize granted if the service is actually 
delivered. This service request drives the optimisation: the algorithm will leverage on the 
capabilities of the storage systems installed within the HYBUILD buildings for optimising the 
provision of the services requested while taking into account the energy operations costs, that 
are related with this service, and the building inhabitants’ comfort. At the end of the process, 
the Energy Manager has the possibility to choose between a set of optimised solution that are 
put at disposal by a Decision Support System. This tool indeed selects the most convenient 
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solution for each aspect taken into account by the multi-objective framework and shows it in a 
dedicated dashboard where Energy Manager can assess the building performances and select 
one solution to be implemented in the building. 

The delivery of the software reported in this document demonstrates how the participation to 
Demand Response (DR) programs could be feasible in this context, exploiting the flexibility 
allowed by the adoption of a HYBUILD solution for the energy management of the building. 

According to the user preferences and demonstration needs, the DLC or the NSGA-II approach 
can be selected. In this perspective, the BEMS can be considered as the harmonization of these 
two different control strategies. The final version of the BEMS will integrate the final models of 
the building devices and its user interface. The implemented software will be tested by means 
of the simulation environment based on TRNSYS developed inside the same WP. This will give 
the possibility of testing and comparing the two control systems even before their development 
into the demo pilots. As expected, the results will be shown in the last deliverable of the WP (i.e. 
D4.4 – Report on system performance).  
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1 Introduction 

1.1 Aims and objectives  

This report aims at introducing the two approaches adopted for energy management and 
implemented inside the Building Energy Management System (BEMS) developed for the 
HYBUILD project. The objective is to describe in detail the procedures and the main aspects of 
the control system developed by ENG for the provisioning of flexibility services to grid operators 
and the one developed by UDL for the minimisation of energy operational costs. 

The implementation of the BEMS started from the definition of the requirements already 
presented in deliverable D4.2 – “Functional Requirements Specifications” (Paternò, et al., 2019). 
In order to align the two control strategies, a strong focus has been done in the initial phases on 
the definition of the scope of the two implementations, in order to share the same inputs and 
the same output. Both  control strategies share also the same system block modelling, as 
depicted in Figure 1 and Figure 2. 

 
Figure 1. Representation of the Mediterranean system inside the HYBUILD BEMS 
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Figure 2. Representation of the Continental system inside the HYBUILD BEMS 

Both in the Mediterranean and Continental cases, the overall shared building representations 
rely on the low-level models of the underlying building devices and subsystems, as depicted in 
each block. The elicitation of these models required much more time than expected from the 
single device developers. Most of them have been finalised by the device developer after a long-
lasting production phase, and provided very close to the deadline of the current deliverable. At 
writing time, most of the models are ready for the Mediterranean case and the completion for 
the Continental one is in progress. Nevertheless, some assumptions have been done to complete 
the expected development task in time. In the next weeks, the final models will be integrated 
into the BEMS. 

The document is directed to the entire consortium according to the related activities described 
in the following section 1.2, given the central role of the control unit within the overall system. 
The dissemination level of the report is “Public” for all external stakeholders potentially 
interested in a deeper understanding of the working mechanisms of the HYBUILD BEMS, 
especially from the methodological point of view and its actual implementation. 

1.2 Relations to other activities in the project 

The development of the BEMS has been done in the framework of Task 4.4 – “Building Energy 
Management System (BEMS) design” for its design and implementation, with the exploitation 
of the advanced control prototyping studied in Task 4.3 – “Control prototyping with hardware 
in the loop”. It continues and will exploit the work already initiated in Task 4.1 - “Buildings model 
and system performance simulations”, in order to test the performance with the use of the 
simulation environment provided in its context. 

The implementation of the BEMS has been done in accordance to the monitoring strategy and 
operational modes defined in Task 4.2 – “Operational function design”. For the aim of this 
report, here the working scenarios of each case will be briefly recapped. 
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As it happened with deliverable D4.1 – “Smart system algorithms” (Rossi, et al., 2018), this report 
could not be released without the collaboration with other partners from different WPs. 
Detailed descriptions of each component or sub-system of both the Mediterranean and 
Continental cases used by the BEMS control systems have been studied within Task 3.1 – “Model 
Based Design and Control”. Detailed studies have been carried out at technology level from the 
developers and a strong effort has been spent in the harmonization of these studies into a single 
shared definition. In this sense, the interconnection and interdependency between WP3 and 
WP4 has confirmed to be very high also for this deliverable, and the collaboration between the 
involved partners has been fostered and will be carried also beyond the end of the deliverable 
itself. 

Other two WPs which have strong relationships with this deliverable are WP1, for the 
exploitation of the KPIs developed inside that WP for the definition of the correspondent 
objective functions, and of course WP6, since the BEMS here implemented will be customised 
and deployed in the demo pilots in the framework of that WP.  

1.3 Report structure 

The deliverable is divided into five sections.  

Section 1 describes the scope of the report, its purpose, structure, contributions and relationship 
with the rest of the project.  

Section 2 introduces the genetic algorithm used to perform the optimisation of the building 
energy flow considering the inclusion of external requests.  

Section 3 describes the control strategy implemented for the Mediterranean case for the 
minimisation of the building costs.  

Section 4 gives the conclusions of the report. 

Section 5 provides the list of references.  

1.4 Contributions of partners 

ENG, as WP leader, coordinated the overall work and designed the structure of the deliverable. 
As responsible also of the activities for the optimisation, ENG implemented and reported about 
the developed system able to exploit the flexibility of building for the provisioning of DR service 
to the grid operators. ENG provided the description of the NSGA-II algorithm, the definition of 
the objectives and constraints, and a first implementation with simplified models which will be 
replaced with the final harmonised ones for its validation in the simulated environment. 

UDL has been working on the predictive control algorithms and the detailed model of the latent 
storage, contributing both with a first analysis of the application of that class of algorithms and 
with the provision of a simplified model of the latent storage for the purposes of the deliverable. 
UDL has also collected the models of the other building components and subsystems and 
worked hard for a common harmonized definition. They developed and reported about the DLC 
implementation for the cost minimisation of the building and presented the first results.   
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2 HYBUILD building management system optimisation process 

2.1 External requests optimisation of building operations 

The HYBUILD BEMS optimiser proposed by ENG for the control of the energy operations inside 
the HYBUILD buildings aims at taking into account simultaneously both service requests from 
the external world, that are advanced by the electric and/or thermal grid operators, and the 
economic and comfort aspects of the building inhabitants, focusing on heating, cooling and 
Domestic Hot Water (DHW) demand. 

This approach is driven by the fact that, in many modern energy applications or market contexts, 
the grid operators are interested in having a flexible energy behaviour from their customers. 
This means that they expect to ask a service to their customers, for instance to follow an 
absorption power profile over a well-defined time horizon, that in turn are rewarded in case 
they are able to respect this request and deliver a service to the grid operators, mostly intended 
as a flexibility service. In the scenarios described in D4.2, this interaction between grid operator, 
for instance a Distribution System Operator (DSO), and the energy manager brings to a reward 
mechanism that implies a net economic revenue. 

The other aspect that drives the optimisation philosophy is the comfort of all the people that 
occupy the building. The energy process envisioned is based on the satisfaction of the setpoint 
indoor temperature and the setpoint DHW temperature, set by the users of the BEMS. These 
two setpoints will be at the basis of the management of the energy operations of all the 
components inside the buildings: coherently with the operational modes presented in the above 
mentioned D4.2, the request of internal energy performance is matched with a unique system 
configuration in terms of active components that are able to provide that amount of thermal 
energy. 

Finally, the economic aspects of the energy process are taken into account by the optimisation 
as well. The main cost elements related to the building energy operation are mostly linked to 
the purchase of electrical energy from the grid, for supplying both the Direct Current (DC) bus, 
providing electricity to the heat pump system, and the electric back-up, providing thermal 
energy to the DHW tank. In this view, the storage systems of the HYBUILD building 
configurations allow to leverage on their capabilities to optimise the period of the day during 
which it is convenient withdrawing energy from the grid and those during which the storages 
efficiently contribute on energy operations of the building. This, indeed, leads to economic 
savings for the Energy Manager of the building. 

All these different aspects of the building operations management are handled at the same time 
by a unique optimisation process that is able to take into account several goals simultaneously. 
This is achieved through the implementation of a multi-objective optimisation algorithm in 
charge of maximising and/or minimising different objective functions in a single process. The 
adopted algorithm is the Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb, Agarwal, 
Pratap, & Meyarivan, 2002); the mathematical formulation and the details of the algorithm itself 
are be provided in the following sections. It is a heuristic algorithm, in particular a genetic one, 
that relies upon the replication of some biological phenomena for setting up an optimisation 
procedure. This typology of algorithm allows to handle complex problems that, usually, 
deterministic approaches fail to address, even though they deal with a lack of accuracy of the 
solutions in exchange for higher computational speed. 

This optimiser is the core of the BEMS system and is developed in Python 3 (Python Software 
Foundation) exploiting many of their mathematical and scientific libraries. The entire BEMS 
solution is proposed as a Django (Django Software Foundation) project and all its components 
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will be delivered as applications of the same BEMS solution, for instance, graphical user 
interfaces, the database, Application Programming Interface, etc. 

2.2 Optimisation algorithm: Non-dominated Sorting Genetic Algorithm II 

As mentioned in the introduction and presented in D4.1, the adopted algorithm is the NSGA-II. 
Here a complete explanation of its features and steps is provided. In the following section its 
adaption to the BEMS optimisation problem is addressed as well. 

NSGA-II relies on the ordering criterion of the population (the set of all the individuals) following 
the Pareto dominance definition (see D4.1). After having properly initialised a starting 
population, it is ordered following this philosophy: individuals not-dominated by any other 
individual are grouped in a front characterised by a higher rank; individuals not-dominating any 
other individual are grouped in a front characterised by a lower rank. This process is performed 
acting on the entire population, removing all the not-dominated individuals once that this 
control is performed checking dominance with every other individual of the population. These 
not-dominated individuals are put in the front with the highest rank available (the rank is 1 if it 
is the first iteration). This process is performed again on the remaining set of individuals until all 
the individual are properly grouped in ranked fronts. 

Once that this first ranking procedure is completed, another sorting criterion is implemented 
within each rank. This criterion is based on the concept of crowing distance, which is an index 
evaluating how an individual of the population is close to the neighbour individuals in the 
solution space. This index is indeed calculated on the basis of the values of the evaluated 
objective functions for that individual in the context of its front: infinite distance is assigned to 
boundary values of the individuals of that front; an index evaluated on the basis of the objective 
function values is assigned to all the other individuals. Ranking the individuals following this 
index allows to explore in a deeper and larger way the solution space. 

At this stage, the genetic engine of algorithm starts to perform its actions. The mechanisms of 
Binary Tournament Selection and crowded-comparison-operator (giving priority to higher ranks 
and higher crowing distances) select the more valuable individuals for being the parents of the 
child generation. According to the analogy with the biological phenomena, crossover and 
mutation actions are performed on the selected individuals, through Simulated Binary Crossover 
and Polynomial Mutation mechanism. The former acts on two parent individuals, actually mixing 
them, and the latter acts on one parent individual modifying it. 

The following step introduces the most innovative feature of the NSGA-II, referred as elitism, 
which allows to avoid possible losses of valuable solutions from the parent generations. In this 
view, the parent and the child population are mixed, they are ordered again following the same 
criteria and only the best N individuals are selected for the next generation, where N is the 
number of individuals within the population. 

These steps are performed for a prefixed number of generations. At the end of this iteration, 
the algorithm provides as results an entire population of Pareto-optimal solutions. 

In Figure 3, the entire NSGA-II algorithm process just described is shown through a flow chart. 
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Figure 3. Flow chart of the NSGA-II algorithm and elitism block representation 

2.3 Optimisation workflow 

This section presents the main steps and the workflow of the optimisation process proposed by 
ENG for the HYBUILD BEMS solution. 

The first phase consists in a set of initialisation actions aiming at collecting all the necessary 
information and external data for triggering the optimisation process. 

The second phase refers to the optimisation process itself and the conditioning of the input data 
and output data of the process, in order to be coherent with the data structure adopted by the 
algorithm. 

2.3.1 Initialisation phase 

The first step towards the initialisation of the whole BEMS optimisation process is the definition 
of the building to be managed. The solution proposed by ENG is seamlessly able to handle both 
Mediterranean and Continental buildings; in this view, the first module is in charge of modelling 
most of the building features, in term of data about the building itself, such as surface, city, etc., 
and about all the systems and components installed inside the building, along with all their 
features. According to the different climate conditions of the city the building belongs to, the 
building is characterised with different systems and devices. 

This is the main definition that could always be used and configured by the Energy Manager 
starting from a pre-set building configuration. 
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The second cluster of information necessary for the initialisation of the optimiser is the 
reception of an optimisation request that represents a trigger for the optimisation process and 
collects all the significant data about the optimisation itself: 

• starting and ending time; 

• time slot; 

• objective to be optimised by the BEMS; 

• optimisation status. 

This trigger is always related to a single building, and it is characterised by the building itself. 
Whenever the optimisation process needs information on duration of the operations, days and 
status of the operations, etc., refers univocally to this data. The results of the optimisation are 
related to this data as well. 

Given that, one of the most important definition performed during this phase is the proper 
configuration of the operational modes that can be implemented by the HYBUILD building 
systems in relation to the different energy needs of the Energy Manager and the Users of the 
BEMS; details about these roles and the operational modes are reported in deliverable D4.2. 
Here, some definitions are reported for the sake of clarity. The Energy Manager is the role in 
charge of configuring the BEMS according to the building he is responsible for, take decisions 
about the energy operations of the buildings and is responsible for the technical and economic 
performances of the BEMS operations within the building. The User is the role, mostly coinciding 
with building inhabitants or energy users, that exploits the benefits of the BEMS operations and 
can deal with the BEMS with dedicated dashboards for setting temperature and other 
parameters. As for the operational modes, they identify all the possible working conditions that 
can be actuated by the Mediterranean and Continental solutions. 

These last elements are essential for the optimisation procedure, given that they define each 
system or device that can be activated for achieving a particular building modality. In general, 
these modalities are: cooling, heating, DHW, and charging (the Mediterranean system, having 
also a Fresnel system, can implement also a solar modality). Each of them defines which systems 
or devices inside that building is turned on or switched off for providing the modality it refers 
to. 

In this phase, the optimisation process starts from the building design for assessing which is the 
operational mode configuration, thus the list of all the operation modes. Upon that, the 
possibility of having more than one operational mode at the same time, that means during the 
same time slot, is explored. This is due to the fact that the Energy Manager or the Users could 
ask for a complex energy behaviour of the building that entails more than one modality active 
at the same time. A typical situation could be, cooling/heating modality to be performed with 
DHW one, or these just mentioned associated with a charging mode. Given that, in this phase 
the optimisation process creates a list of possible complex operation modes that can be 
implemented inside the building on the basis of the compatibility of one operational mode to 
another. This is mostly evaluated considering the active systems for each operational mode and 
assessing if the systems active for two different operational mode are in contrast with each 
other. 

Another crucial step for the definition of the optimisation environment is having the building 
demand in terms of thermal power to be provided to the building in order to fulfil the comfort 
request of its inhabitants. Relying upon the simulations performed by EURAC and reported in 
(EURAC, 2019)b, a tailored module of optimiser is able to retrieve the heating, cooling and DHW 
demand for each hour of the day over a year in accordance with the temperature setpoints 
provided by the Energy Manager and/or the Users of the BEMS application. These data are then 
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properly modelled and arranged in a data structure compliant with the one adopted for the 
optimisation process. In this view, the definition of the thermal and DHW requests from these 
actors goes hand in hand with the building demand; the temperature setpoints are indeed set 
and chosen by Energy Managers and Users as a request. This information is then handled 
properly for being put in relation with the simulated data and then used for creating building 
demand data structures. The setpoints from the buildings actors are manipulated as inputs 
coming from their dedicated dashboards. 

The steps just described are mostly linked with the description of the building features. The next 
procedure is related to ambient conditions. In order to correlate the actual energy building 
demand and the solar systems capability with the operation managed by the BEMS optimisation, 
two crucial ambient conditions are needed: ambient temperature and solar radiation. The 
initialisation module in charge of gathering these data accesses to an open weather service, 
Weatherbit (Weatherbit, 2020). 

The last step of the initialisation phase concerns the conditioning of other data coming from the 
external world, thus the requests from grid operators for the provision of flexibility services in 
shape of Demand Response mechanisms. In this implementation, the BEMS considers both DSO 
and district heating operators (for the Continental climate) in charge of sending service request 
profiles to the Energy Manager. These profiles consist in a power absorption profile for a 
determined time horizon, a tolerance range within which this service can be considered 
satisfied, and a money reward signal for pushing the BEMS in pursuing the objective of providing 
the above-mentioned flexibility services to the grid operators. All these data are arranged in 
tailored structures for being handled by the BEMS optimiser. 

These are the initialisation procedures that are essential for the proper configuration and the 
definition of all the data that are treated and used by the optimisation algorithm. Its phases are 
described in the next section. 

2.3.2 Optimisation phase 

This second phase of the optimisation process is related to the implementation of the algorithm 
itself, as described in section 2.2, and the data conditioning operations. 

As mentioned in the introduction of this section, the adopted optimisation approach entails 
some genetic procedures for getting to an optimal Pareto front. Many steps are envisioned for 
mimicking the evolutionary biological phenomena, which are briefly presented here. 

This first step of this phase performs the scheduling of the possible complex operational modes 
found in the initialisation phase that rules the energy flows among the building components in 
accordance with heating, cooling and DHW building demands. The optimisation algorithm has 
to know among which possible configurations is free to find a possible solution; this procedure 
defines the variable space of the algorithm. Once found the possible system configurations, 
defined by a set of complex operational modes, the heuristic engine of the algorithm seeks for 
the Pareto optimal solutions. This procedure is performed by assessing, time slot by time slot, 
the thermal demand (heating or cooling, these two modality cannot occur simultaneously) and 
the DHW demand. According to what is requested for heating/cooling the building and for 
heating the water, for each time slot, a set of complex operational modes are selected. These 
are able to provide the necessary thermal supply to the building, thus, time slot by slot, they 
ensure that all the components needed for providing the requested thermal energy are 
operational. 

In simple words, this step allows to know in each time slot which are the possible solutions to 
be adopted by the BEMS for providing the requested heating/cooling and DHW demand: for 
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instance, the algorithm could select, driven by its objectives, a configuration supplying heating 
demand through RPW-HEX storage or another configuration in which heating demand is 
satisfied by the heat pump supplied by the battery. 

Once the building system configuration is defined, the proper optimisation procedure begins. 
The first step of the algorithm consists in creating the first population that will start the process, 
created randomly from the possible system configurations defined above. It is important to 
understand how each single individual of the population is structured: an individual will be the 
collection of ordered time slots from the starting time of the optimisation request trigger until 
its ending time. In this way, each individual will represent an energy operation configuration for 
the entire time horizon. This solution has been chosen because of the presence of two different 
energy storages upon which the optimisation can leverage for finding an optimal technical and 
economical solution: having a complete view on what happens during the entire time horizon in 
a unique solution allows to take into account the best storage management over the different 
periods of the day, especially focusing on the varying energy tariffs and the peaks of flexibility 
requests from grid operators. 

Given this, each individual of a population consists of a set of decision variables equal in number 
to the number of time slots. Each decision variable, in turn, reports the information about the 
system configuration and can be considered as an array. The first information in this array 
reports the time slot the decision variable refers to; the other ones report the status of each 
system installed inside the building. This structure is depicted in Figure 4 (where: Z is the 
dimension of the population; K is the number of time slots; P is the number of building devices). 

 
Figure 4. Representation of the population individual used for the NSGA – II algorithm 

The decision variable identifies a well-defined flexibility availability of the HYBUILD building 
system. Moreover, some of the device statuses, apart from their Boolean characterisation, could 
also determine the variability on another level, referred more strictly to the device itself. Indeed, 
some of the systems or devices installed within the building can control their energy behaviour 
not only depending on their status (turned on or switched off) but also setting a precise value of 
power absorption and/or injection. 

Through the definition of the first population set aimed at starting the algorithm, it is also clear 
the extension of the decision variable space into which the algorithm will seek for a Pareto 
optimal solution. This will help also to understand how the algorithm will implement the genetic 
operator that are the evolutionary engine of the process. 

The following step of the algorithm is actually the evolution of the population, generation by 
generation, towards the Pareto optimal front. As briefly explained in the dedicated section, 
during each generation two main genetic operators are implemented: 

• Simulated Binary Crossover; 

• Polynomial Mutation. 

In the case of the proposed optimisation problem, an expedient is adopted for having child 
populations that are coherent with the parent ones. As already said, each individual of the 
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populations consists of a set of ordered decision variables that are characterised by their time 
slots for allowing the description of the building energy behaviour throughout the time horizon. 
Due to this, the implementation of the genetic operators has to take in account this 
chronological order because it entails the reasoned mix of one individual (in the case of 
Polynomial Mutation) or two individuals (in the case of Simulated Binary Crossover) of a same 
parent population for creating an individual of the child population; as a matter of fact, each 
individual of this child population has to respect this chronological order for providing a 
technically feasible solution. In this view, the proposed optimisation process adopts the 
following criterion for implementing the genetic operators: taken one or two individuals of the 
parent generation, the decision variables to be handled by the operators are referred to the 
same time stamp; moreover, this shall be done for all the decision variables and the new born 
individual of the child population shall be complete, thus it has to consists of all the decision 
variables foreseen for the addressed time horizon (one decision variable for each time slot). 
Finally, for ensuring the technical feasibility of the new born individuals, each decision variable 
configuration has to be checked in order to be mapped over one of the possible complex 
operational configurations in that time stamp. 

This is the method that has been adopted for having coherent solutions generation by 
generation and represents a customisation and an improvement of the optimisation procedure 
proposed by the algorithm. The other steps presented in the section 2.2, are then performed as 
foreseen by the algorithm. 

Generation by generation, each individual of the child population is characterised by its 
objective functions values and it is stored in a tailored data structured for being processed by 
the sorting procedure. In order to enrich this new population with valuable solution and to avoid 
to leave behind solution that could improve the entire process, before proceeding the child 
population is enlarged by adding the individuals of the parent population. 

As clearly reported by the algorithm name, the core of this genetic algorithm is represented by 
the sorting criterion that relies upon non-domination concept defined within the Pareto-
optimality in multi-objective methods, see D4.1. During the sorting procedure, the individuals 
are arranged in fronts, properly ranked, and, within a single front, they are ordered following 
the crowing distance index. Once that all these techniques are implemented and completed, the 
child population undergoes the elitism technique and only the best solutions are selected for 
the next generation. 

Once that all the generations are completed, the resulting data structure contains the Pareto-
optimal solution of the problem. This set goes hand in hand with the Boolean and analogical 
setpoints that define the complete set of the optimised solution to be effectively implemented 
by the systems and devices inside the HYBUILD buildings. 

The fact that this algorithm provides a Pareto-optimal front push for a Decision Support Layer 
able to select automatically the solutions among this front that allows the better performances 
with respect of the adopted objective functions. In this view, two solutions are proposed as the 
most valuable for the HYBUILD building configuration: 

• the solution providing the best performance related to the economic management of 
the energy processes of the building; 

• the solution providing the best performance related to the provision of flexibility 
services to the grid operator. 

The Energy Manager is then provided with a tailored dashboard for assessing the results of both 
solutions in details and choosing one of those for being implemented by the BEMS. 
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2.4 Decision variables and constraints of the optimisation process 

The decision variables of the optimisation process addressed by the BEMS are mostly referred 
to the status of the devices within the building whose energy operations have to be managed. 
A first description of these variables is provided in the previous section and in particular in Figure 
4, in relation with the steps of the optimisation algorithm itself. Here, a more detailed definition 
is provided. 

It is worth noting that the decision variables are different on the basis of the climate of the 
building to be optimised, thus on the basis of the systems and devices installed within the 
building itself. In this view, the envisioned decision variable for the Mediterranean building is 

 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑖,𝑗
𝑚𝑒𝑑 = 

[
 
 
 
 
 
 
 
 
 
 

𝑡𝑖𝑚𝑒 𝑠𝑡𝑎𝑚𝑝𝑖,𝑗

ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝 𝑠𝑡𝑎𝑡𝑢𝑠𝑖,𝑗

𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑢𝑙𝑒 𝑠𝑡𝑎𝑡𝑢𝑠𝑖,𝑗

𝑅𝑃𝑊 − 𝐻𝐸𝑋𝑖,𝑗

𝑑ℎ𝑤 𝑡𝑎𝑛𝑘 𝑠𝑡𝑎𝑡𝑢𝑠𝑖,𝑗

𝑏𝑢𝑓𝑓𝑒𝑟 𝑡𝑎𝑛𝑘 𝑠𝑡𝑎𝑡𝑢𝑠𝑖,𝑗

𝑓𝑟𝑒𝑠𝑛𝑒𝑙 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑡𝑎𝑡𝑢𝑠𝑖,𝑗 

𝑑𝑐 𝑏𝑢𝑠 𝑠𝑡𝑎𝑡𝑢𝑠𝑖,𝑗

𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑏𝑎𝑐𝑘𝑢𝑝 𝑠𝑡𝑎𝑡𝑢𝑠𝑖,𝑗 ]
 
 
 
 
 
 
 
 
 
 

 

whilst, for the Continental climate building, the decision variable is: 

 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑖,𝑗
𝑐𝑜𝑛𝑡 = 

[
 
 
 
 
 
 
 

𝑡𝑖𝑚𝑒 𝑠𝑡𝑎𝑚𝑝𝑖,𝑗

ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝 𝑠𝑡𝑎𝑡𝑢𝑠𝑖,𝑗

𝑅𝑃𝑊 − 𝐻𝐸𝑋𝑖,𝑗

𝑒𝑛𝑒𝑟𝑏𝑜𝑥𝑥 𝑠𝑡𝑎𝑡𝑢𝑠𝑖,𝑗

𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑢𝑠𝑖,𝑗

𝑑𝑐 𝑏𝑢𝑠 𝑠𝑡𝑎𝑡𝑢𝑠𝑖,𝑗

𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑏𝑎𝑐𝑘𝑢𝑝 𝑠𝑡𝑎𝑡𝑢𝑠𝑖,𝑗 ]
 
 
 
 
 
 
 

 

As a matter of fact, each decision variable is directly linked to a complex operational mode, 
which is the configuration chosen by the algorithm for that individuals on that time stamp for 
addressing building heating, cooling and DHW demand. As explained above, once defined the 
status of each device, it is possible to obtain and set the power values associated with each of 
them. 

As for the constraints of the process, the BEMS adopts the same rated values of the components 
data sheets. For the sake of simplicity, they are not reported here; please refer to these 
documents for having a complete definition of these data. 

2.5 Objective functions and related KPIs 

As stated many time over this section, the proposed optimisation framework provides multi-
objective capabilities and allows to take into account different needs of the energy management 
within the HYBUILD building. The BEMS optimiser addresses simultaneously three different 
aspects: 

• the thermal comfort of the building inhabitants; 

• the economic management of the entire energy process; 

• the provision of grid services to the grid operators by leveraging on building devices 
capabilities. 
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Some aspects are taken into account by the use of proper constraints for the definition of the 
building operational configuration. As explained in 2.3.1, comfort requests from the Energy 
Manager and the Users are addressed by properly initialising heating, cooling and DHW requests 
on the basis of the setpoint temperatures and the building thermal behaviour simulations. These 
pieces of information drive the entire optimisation process from the very beginning and ensure 
the satisfaction of the comfort objective. Since no dedicated KPI are referred in D1.3 (Barchi, et 
al., 2018) to this comfort aspect, apart from thermal complaints, the BEMS solution aims at 
addressing this aspect by calculating the average deviation of the temperature set from the 
monitored one. In the flowing, the definition of the Temperature Average Deviation (TAD) for 
both building and DHW is provided: 

𝑇𝐴𝐷𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 = 
∑ (𝑇𝑖,𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔

𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑 − 𝑇𝑖,𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔
𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡

)𝑛
𝑖=1

𝑛
  

𝑇𝐴𝐷𝐷𝐻𝑊 = 
∑ (𝑇𝑖,𝐷𝐻𝑊

𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑 − 𝑇𝑖,𝐷𝐻𝑊
𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡

)𝑛
𝑖=1

𝑛
  

where: 

• 𝑇𝑖,𝑥
𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑 is the monitored temperature of the building/DHW in that ith time slot; 

• 𝑇𝑖,𝑥
𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡

 is the setpoint temperature of the building/DHW in that ith time slot; 

• 𝑛 is the number of time slots inside the time horizon. 

This calculation cannot be performed at optimisation time, since it needs the monitoring 
temperature data of the building and DHW. It will be calculated by a BEMS dedicated module 
after the optimisation. 

The economic aspect of the energy management inside the building is taken into account inside 
the optimisation process by means of a dedicated objective function. This refers to the economic 
balance between the expenditures for purchasing energy from outside the building, element 
that can be optimised by leveraging on storage systems, and the rewards provided by the 
appointed grid operators for the provision of flexibility services, as explained for the next 
objective function. This reward is evaluated time slot by time slot and it is achieved by the 
building if its building behaviour in terms of energy demand to these grid operators stays within 
a pre-defined range set by the grid operators themselves while requesting the flexibility service. 
In the following, the Economic Balance (EB) objective is presented: 

𝐸𝐵 =   ∑ (𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡𝑖 − 𝑔𝑟𝑖𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑟𝑒𝑤𝑎𝑟𝑑𝑖)
𝑛

𝑖=1
  

𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡𝑖 = 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑖𝑐𝑒𝑖  × (𝑔𝑟𝑖𝑑 𝑒𝑛𝑒𝑟𝑔𝑦𝑖  +  𝑏𝑎𝑐𝑘 − 𝑢𝑝 𝑒𝑛𝑒𝑟𝑔𝑦𝑖); 

𝑔𝑟𝑖𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑟𝑒𝑤𝑎𝑟𝑑𝑖 =  𝑟𝑒𝑤𝑎𝑟𝑑𝑖  × 𝑔𝑟𝑖𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑖; 

where: 

• 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑖𝑐𝑒𝑖 is the price set for purchasing 𝑔𝑟𝑖𝑑 𝑒𝑛𝑒𝑟𝑔𝑦𝑖  (electrical from distribution 
grid or thermal from district heating) in that ith time slot; 

• 𝑏𝑎𝑐𝑘 − 𝑢𝑝 𝑒𝑛𝑒𝑟𝑔𝑦𝑖  is the energy for supplying in back-up mode the DHW devices in 
that ith time slot; 

• 𝑟𝑒𝑤𝑎𝑟𝑑𝑖  is the reward proposed by the grid operator in that ith time slot; 

• 𝑔𝑟𝑖𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑖 is a Boolean indicating if the service has been 
provided or not in that ith time slot; 

• 𝑛 is the number of time slots inside the time horizon. 
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Finally, the third objective function is the one characterising the proposed optimisation process, 
since it is the only feature of the BEMS that parametrises the flexibility service to the grid 
operators; it is actually one of the selected KPI (KPI.6 – Flexibility) chosen in D1.3 (Barchi, et al., 
2018). This objective function takes into account the provision of flexibility services to the grid 
operator that request a well-determined behaviour of the building in terms of energy withdrawn 
at the point of delivery in exchange for a reward, to be paid in case the BEMS is able to drive the 
energy behaviour of the building in the tolerance range defined by the grid operator. These 
requests are sent before the optimisation process and drive the optimisation itself. The 
possibility of having this mechanism of requests and response from the building energy 
operations entails the implementation of a Demand Response service. The objective function 
that parametrises this phenomenon is than labelled as Demand Response Power Tracking 
(DRPT): 

𝐷𝑅𝑃𝑇 = 1 −
∑ |𝐸𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒,𝑖 − 𝐾𝐶𝐿𝐸𝐷𝑒𝑚𝑎𝑛𝑑,𝑖|

𝑛
𝑖=1

∑ 𝐸𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒,𝑖
𝑛
𝑖=1

 

𝐾𝐶𝐿 =
∑ 𝐸𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒,𝑖

𝑛
𝑖=1

∑ 𝐸𝐷𝑒𝑚𝑎𝑛𝑑,𝑖
𝑛
𝑖=1

 

where: 

• 𝐸𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒,𝑖 is the energy behaviour of the controlled system in that ith time slot; 

• 𝐸𝐷𝑒𝑚𝑎𝑛𝑑,𝑖 is the desired energy behaviour request in that ith time slot; 

• 𝐾𝐶𝐿 is the indicator of the contribution level the building may provide, calculated as 
normalisation factor to compare the two profiles; 

• 𝑛 is the number of time slots inside the time horizon. 

This is the most general formulation of this objective function. In any case, as explained in 
section 2.3.1, according to the climate referred into the optimisation, there could be two 
different grid operators requesting for such services: DSO and district heating operators. 

2.6 Integration of models and simulations 

The process performed by the BEMS optimisation has to rely upon the modelling of both the 
building energy behaviour and the single system and device energy operations. 

As for the building, the most important phenomena to take into account are the thermal and 
DHW demand for satisfying the building inhabitants comfort requests. This has been performed 
taking as a reference the simulation performed in (EURAC, 2019)a and (EURAC, 2019)b reporting 
the heating, cooling and DHW demands for each hour in a year at different temperature 
setpoints for the Mediterranean and Continental HYBUILD reference buildings, located in Athens 
and Stuttgart, respectively. As mentioned in section 2.3.1, these simulations are the basis for 
retrieving the building demands inside the optimisation time horizon. 

Another relevant modelling feature of the BEMS is the use of the operational modes already 
presented in the previous sections. These are able to report in a clear and unique way the 
operational configuration of the building. Relying upon the description and the Piping and 
Instrumentation Diagram (P&ID), the BEMS configures  the proper connection between all the 
systems and devices present in both the buildings and, consequently, the BEMS derives the 
possible compatibility between each operational mode, thus all the possible system 
configurations in terms of active systems or devices for providing a certain combination of 
building modality, such as heating, cooling and DHW. 

Due to the high-level approach implemented by the BEMS optimisation process, focused on 
providing services to external actors like electric and district heating grid operators, the most 
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important modelling process is the one just presented. This indeed allows to represent the 
behaviour of the building for interfacing both with the building inhabitants and the operators at 
the points of delivery of electricity and thermal energy.  

As for the models of all the systems and devices, due the high computational effort that a 
complete simulation would require to the BEMS optimiser during the execution of the 
optimisation algorithm, the BEMS does not implement complete models of each systems. In this 
version, simplified models and performance maps of general equipment comparable to the 
systems and devices of HYBUILD reference building are adopted. In the future implementation 
of the BEMS inside the pilots, this software solution will be enhanced with the detailed models 
of the equipment installed inside each pilot building. 
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3 High-level control strategy for the Mediterranean system 

3.1 Introduction 

Beyond Rule Based Control (RBC), some control techniques exist that may improve our system 
performance, particularly when forecasted information is available. Model Predictive Control 
(MPC) is a technique that has increased its popularity for energy systems control and has proved 
its good performance (Rawlings & Mayne, 2009). MPC requires defining an operating time 
horizon of the system as an optimization problem. Usually, such a problem is encoded as a Mixed 
Integer Non-Linear Programming (MINLP) problem (Sahinidis, 2019) and requires of specialized 
solvers to find optimal solutions such as Solving Constraint Integer Programs (Gleixner, et al., 
2018). However, current state-of-the-art solvers only deal with certain type of non-linearities, 
making, sometimes, hard or impossible to express a complex system as a quasi-linear system. 
Furthermore, if one can think of simplifying complex models to suitable linear expressions, its 
necessary accuracy remains as an open question. 

A look at the description of the simplified models for the optimization of the Mediterranean 
system (Zsembinszki, 2019) reinforces such point of view. As an example, consider the Heat 
Pump+ Refrigerant PCM Water (RPW) subsystem. One of its operational modes (cooling mode 
3) is modelled as an iterative function, making impossible to derive MINLP expressions to those 
problems. Not to mention several non-linearities found in other subsystems as the 
establishment of the states of charge for Phase Change Material (PCM), computation of the 
cooling power for different cooling modes, as well as the rules of activations for DC-bus 
subsystem. 

Under this scenario, as mentioned in (Rossi, et al., 2018) (Section 2), our focus points to a control 
system based on reinforcement learning techniques. 

3.2 Deep Learning Control 

Our proposal of smart control for HYBUILD is based on a typical reinforcement learning paradigm 
as represented in Figure 5. 

In this schema, the environment represents our HYBUILD system, which can be described by its 
corresponding models as well as its state. The agent, based on the environment state, decides 
an action that provokes a given reward. That reward is, actually, the optimization objective, and 
it is feed back to the agent in order to learn about the corresponding action and determine an 
optimal policy.  

There are many types of agents that define a particular machine learning technique. In this case, 
we consider a 3-layers fully connected neural network of size 𝑁𝑖𝑛𝑝 × 𝑁ℎ𝑖𝑑 × 𝑁𝑜𝑢𝑡 with the 

following characteristics: 

• 𝑁𝑖𝑛𝑝 is the number of inputs, defined by the system variables as well as the system state 

vector. 

• 𝑁ℎ𝑖𝑑,𝑐𝑜𝑜𝑙 and 𝑁ℎ𝑖𝑑,ℎ𝑒𝑎𝑡 are the hidden layer sizes for cooling and heating modes 

respectively. It uses to be much larger than inputs and outputs. Actually, it is adjusted 
by a later hyper-parameter setting. 

• 𝑁𝑜𝑢𝑡,𝑐𝑜𝑜𝑙  and 𝑁𝑜𝑢𝑡,ℎ𝑒𝑎𝑡 are the cardinality of the actions set. 
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Figure 5. Reinforcement learning paradigm 

3.2.1 Control model 

The HYBUILD system model operates at two different slotted time scales. First, a finer slot is 
considered in order to numerically compute the HYBUILD system behaviour (we typically take 3 
minutes). Second, a larger slot is used to manage the control system (15 and 30 minutes have 
been considered). We denote both slots as ∆𝑡 and 𝑇𝑠 respectively. Inside 𝑇𝑠, any action decided 
by the control system is invariant until reaching any subsystem limit. As an example, if during a 
given slot one decides to charge the Refrigerant PCM Water – Heat Exchanger (RPW-HEX) 
subsystem, the charging process will not stop until reaching the maximum state of charge. 
Similarly, the input system variables for the control system are considered invariant in 
𝑇𝑠.HYBUILD control model for the Mediterranean system may be defined for cooling or heating 
purposes, but the heating model can be considered a subset of the cooling model because 
heating operations for the Mediterranean are much simpler. Actually, heating bypasses RPW-
HEX and Sorption subsystems, resulting in only one operational mode for the Heat-Pump 
subsystem. 

The system variables considered as an input to our control model are: 

• Thermal energy demand for cooling/heating in the current 𝑇𝑠 (𝑇𝐸𝑇𝑠

𝑑𝑒𝑚). 

• Thermal energy demand for DHW in the current 𝑇𝑠 (𝑇𝐸𝑇𝑠

𝑑ℎ𝑤). 

• Ambient temperature. 

• Solar radiation. 

• Energy price (cost) for electric demand in the current 𝑇𝑠 (𝐶𝑇𝑠
). 

As system status variable, we consider: 

• Battery state of charge in DC-bus subsystem. 

• State of charge of RPW-HEX subsystem (only for cooling model). 

• Buffer tank temperature. 

All input variables are standard normalized but energy price for electric demand, which has been 
considered binary because we deal with a binary electric tariff as a function of daytime. 
Consequently, 𝑁𝑖𝑛𝑝 = 8. 
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The set of actions A that guide control can be defined as A = (C; S; B), where C is the set of 

cooling/heating operation modes, S is the set of activation modes for the sorption subsystem 

and B is the set of battery modes in the DC-bus subsystem. As only the set C differs for the 

cooling and the heating models, one can differentiate the set of actions accordingly: Acool = 

{Ccool, S, B} and Aheat = {Cheat, S, B}. 

According to (Zsembinszki, 2019) Section 6, Ccool = {0, 1, 2, 3, 4} where 0 corresponds to 

operational mode 5 (heat pump is off, cooling system is off) and the rest match with its 

corresponding mode. S = {0, 1} because the sorption subsystem may be on or off. For the heating 

modes, as sorption and RPW-HEX subsystems are bypassed, only one operational mode is 

considered, being Cheat = {0, 1}.  

Concerning the actions related to DC-bus subsystem, as reported in (Koch, 2019), the high-level 
control may determine the E1 and E2 thresholds that define the area of DC-bus operation, as 
well as the maximum charging/discharging power when operating in charge/discharge areas. As 
we only deal with discrete values for our control model, we have simplified the DC-bus control 
operations according the following rules: 

• Charging/discharging power is set to a fixed value, namely 3 kW. 

• If from control we want to force the DC-bus to operate in charging, buffer or discharging 
mode, we set the pair of values (E1, E2) to 3 fixed levels: (75, 90), (10, 90), and (10, 25), 
respectively, as a percentage of the battery state of charge. 

Following these assumptions, B = {0, 1, 2}, which corresponds to charging, buffer, and 

discharging mode, respectively. 

Finally, considering that during cooling mode 2 (all energy to refrigerate from PCM) sorption 
mode is in mode 0, the set of possible actions are: 

Acool = {[1, 0, 0], [1, 0, 1], [1, 0, 2], [1, 1, 0], [1, 1, 1], [1, 1, 2], 

[2, 0, 0], [2, 0, 1], [2, 0, 2], 

[3, 0, 0], [3, 0, 1], [3, 0, 2], [3, 1, 0], [3, 1, 1], [3, 1, 2], 

[4, 0, 0], [4, 0, 1], [4, 0, 2], [4, 1, 0], [4, 1, 1], [4, 1, 2]} 

and |Acool| = 𝑁𝑜𝑢𝑡,𝑐𝑜𝑜𝑙 = 21. 

In heating mode, considering that sorption mode is always off, results: 

Aheat = {[1, 0, 0], [1, 0, 1], [1, 0, 2]} 

and |Aheat| = 𝑁𝑜𝑢𝑡,ℎ𝑒𝑎𝑡 = 3. 

It should be noted that all the cases where cooling/heating mode is 0 may be omitted because: 

• If there is some energy demand, cooling/heating mode 0 is not an option. 

• Otherwise, without energy demand, any cooling/heating mode will perform as mode 0 
inside 𝑇𝑠. 

In other words, mode 0 is adopted when energy demand is null. 

3.2.2 Network description 

For the purpose of the current deliverable, only a three-layer fully connected network is used. 
Using additional layers as well as their sizes is left for a future work where hyper-parameter 
optimization is planned to be analysed. 
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The tree layers and their corresponding characteristics are the following: 

• Input layer size. 𝑁𝑖𝑛𝑝 = 8. Standard normalized. 

• Hidden layer size. 𝑁ℎ𝑖𝑑,𝑐𝑜𝑜𝑙 = 1,000. 𝑁ℎ𝑖𝑑,ℎ𝑒𝑎𝑡= 100. Activation function ELU. Dropout 
rate 0.8. 

• Output layer size. 𝑁𝑜𝑢𝑡,𝑐𝑜𝑜𝑙  = |Acool| = 21. 𝑁𝑜𝑢𝑡,ℎ𝑒𝑎𝑡 = |Aheat| = 21. Outputs as softmax 

of logits. Action is taken as a multinomial of logarithm of outputs. 

Other parameters considered and to be optimized in a later hyper-parameter optimization 
analysis are: 

• Learning rate: 0.0005 (𝛼). 

• Discount rate: 0.99 (𝛾). 

3.2.3 Learning algorithm 

The neural network is trained by a policy gradient algorithm where the cross entropy of the 
multinomial outputs is minimized. Under this scenario, any objective function may be defined, 
being based on economic or energy reward. In our case, we consider the following objective 
function that depends on the neural network parameters, as: 

 

where reward 𝑟𝑡 is defined as: 

 

being: 

• Τ, the set of days to be measured within an episodic reward. Training and test sets are 

described in section 3.3. 

• 𝐸𝐸𝑡
𝑓𝑔

, the electrical energy bought from the grid in slot t required by different 
subsystems being provided from DC-bus or independently such as the DHW electric 
tank. 

• 𝐸𝐸𝑡
𝑡𝑔

, the electrical energy sold to the grid in slot t by DC-bus taken from the battery. A 
factor of 0.5 has been considered. 

• 𝑇𝐸𝑡
ℎ𝑝

, the thermal energy provided for cooling/heating by the heat pump subsystem in 
slot t. 

• 𝑇𝐸𝑡
𝑝𝑐𝑚

, the thermal energy provided for cooling/heating by the PCM subsystem in slot 
t. 

• Penalty is the cost assumed for a non-covered demand. A value much higher than the 
energy cost is used. 

• 𝐶𝑡 and 𝑇𝐸𝑡
𝑑𝑒𝑚 as detailed in Subsection 3.2.1. 

Note that 𝑇𝐸𝑡
𝑑ℎ𝑤 is not part of the objective function because it is assumed that DHW 

requirements will always be fulfilled by the electrical backup heater. 

When training the network, policy parameters (𝜃) are estimated according a gradient descent 
algorithm as: 

 

or equivalently, according to the policy gradient theorem, as: 
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Being 𝜋𝜃(𝑎|𝑠𝑡) a differentiable policy for any action (𝑎) given a system state (𝑠𝑡). 

3.2.4 Implementation aspects 

Both, system models as detailed in (Zsembinszki, 2019) and control models here detailed are 
written in Python 2 (van Rossum, 1995). Furthermore, Tensorflow libraries are used in control 
models (Tensorflow. an end-to-end open source machine learning platform, n.d.). The 
availability of a lite version of Tensorflow libraries make suitable this implementation for light 
hardware or micro-controller environments that may be required for control scenarios in real 
time. 

3.3 Training the network 

In this section, we describe the data set used to train and test the network. At this point, our 
computations are only performed for the cooling mode with Athens weather data, but it could 
be applied to any other location. 

We also discuss the computing training time and its convergence issues. 

3.3.1 Training and test data 
Cooling data set spans from day 120 to 250 of the year, while heating data set spans from day 
290 to 365 and from 1 to 90. Such sets are shuffled and split into smaller sets. Each set is 

composed of a fixed number of days (Τ ). Actually, its cardinality (|Τ |) is a parameter. Typically, 

we take 3 or 6 days on each set. From the 130 available days, we take 18 for testing and the rest 
for training purposes. 

As mentioned in Subsection 3.2.1, our inputs to the control model are: thermal demand for 

cooling/heating (𝑇𝐸𝑡
𝑑𝑒𝑚), thermal demand for DHW (𝑇𝐸𝑡

𝑑ℎ𝑤), ambient temperature, solar 
radiation, and energy price (𝐶𝑡). 

Ambient temperature and solar radiation are obtained from EnergyPlus weather data Europe 
WMO Region 6, Greece, Athens 167160 (IWEC) (Weather Data by Location. All Regions - Europe 
WMO Region 6 - Greece). Because the slot time for this data is one hour, we linearly interpolate 
when 𝑇𝑠 is smaller. 

Thermal demand for cooling/heating and thermal demand for DHW are obtained from 
documents (EURAC, 2019)a and (EURAC, 2019)b respectively and multiplied by the building 
surface (100 m2).  

For the energy price, we take a two period tariff: 

• 0.2 €/kWh from 13:00 to 23:00 hours. 

• 0.1 €/kWh the rest of the day. 

3.3.2 Training times 

Before proceeding to describe the performance results, it is worth to mention a few aspects of 
the training process. As mentioned, a reward is computed during a set of days (a few days, three 
or six as an example), then, gradients are computed and propagated. This process is repeated 
for all the sets in the training set, forming an iteration. Every small number of iterations we apply 
the learned model to the test set in order to obtain the control system performance, always 
keeping the best model so far. 
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Figure 6 shows the reward (or cost) for the test set as a function of the iteration at two different 
scales, showing the learning process. During the first iterations, the network rapidly finds better 
strategies than the random at the beginning. It is a common behaviour to get stuck at a local 
minimum during some large number of iterations. At this point, the discovered strategies are 
quite good, but still far away from the best ones found beyond 2,000 iterations. 

Note that an iteration, in a 3.3 GHz CPU takes approximately 15 seconds (for 𝑇𝑠 = 30 min and ∆𝑡 
= 3 min), and consequently, the learning plot shown above results after 10 days of CPU 
computing. 

 

 
Figure 6. Reward for test set in cooling mode 

3.4 Results 

The training of the system is performed for the following settings: 

• Maximum battery energy in DC-bus: 6 kWh. 

• Maximum battery charging/discharging power in DC-bus: 3 kW. 

• Photovoltaic panels surface area: 16 m2. 

• Photovoltaic panels orientation: 0°. 

• Photovoltaic panels inclination: 30°. 

• Photovoltaic panels latitude: 38°. 

• Surface area of the Fresnel reflectors: 100 m2. 

• Energy storage capacity of the RPW-HEX subsystem: 35,000 kJ. 

As settings for the control system, we take: 

• Time slot: ∆𝑡 = 3 min for cooling mode and ∆𝑡 = 15 sec for heating mode. 

• Delta time: 𝑇𝑠 = 30 min. 

• Six days for each set of data. Test set consists of three sets (18 days). 

Figure 7 shows the performance of the trained network for the test set. The plots, from up to 
down, show: 

1. The cooling and DHW demand. For the cooling demand, green and orange areas show 
how the demand is fulfilled; whether from heat pump or from PCM (RPW-HEX). 
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2. PCM and DC-bus battery state of charge, as well as the solar radiation. 
3. Temperature in the buffer tank and the resulting thresholds on DC-bus subsystem and 

activation of sorption subsystem according to the corresponding action. 
4. Cooling mode for Heat Pump, energy tariff as binary (0 corresponds to 0.1 €/kWh and 1 

to 0.2 €/kWh) and cumulative operation cost. 
5. Amount of energy sold and bought for every price. 

 
Figure 7. Reward for test set in cooling mode 

Carefully inspecting Figure 7 some aspects of the control policy may be highlighted: 

• The operational cost for the 18 days of the test set is very low (3.4 €). As seen below, it 
is far better that any of the rule based control policies tested under the same scenario 
(detailed in Subsection 3.4.1), indicating that our deep learning control approach is 
highly efficient. 

• Cooling demand is always covered either from HP or from PCM in order to avoid the 
penalties. 

• Cooling modes 1 and 4 are never (or rarely) used. 

• A zoom view represented in Figure 8 shows DC-bus discharging battery at peak tariffs 
periods by adjusting the E2 threshold, putting DC-bus in discharging mode. 

• Control uses PCM as a buffer and avoids its full discharge in order to avoid lack of 
demand cover penalties. 

• As seen from the bottom plot, the amount of energy sold in tariff period 0 (low cost) 
exceeds the amount of energy bought during the same period. Depending of local 
regulations, an energy retailer may not reward consumers for the amount of energy re-
injected beyond the one consumed during a certain period. In this case, even control 
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policy is correct, the resulting operational cost is not correct. We deal with this fact later 
in Section 3.5. 

• No substantial differences are observed when running control with a smaller slot time 
(𝑇𝑠 = 15 min). 

Heating mode, because of its simplicity, have been only run with sell/buy energy control (see 
Section 3.5). 

 
Figure 8. Control performance in cooling mode. Zoom view 

3.4.1 Rule Based Control policies 

Trying to evaluate the performance of the deep learning control policy, we implement three 
basic rule-based control policies for cooling mode. Each RBC policy is based on its own thresholds 
and can be described, without detail, as follows: 

1. In all the RBC policies, battery mode is determined by a battery state of charge 
threshold. If grid cost is high, charging and buffer modes are used. Otherwise, buffer 
and discharging are employed. This last rule may seem counter-intuitive, but give best 
results than its reverse (charging/buffer with grid cost low and discharging/buffer with 
grid cost low). It is explained by the fact that high cost grid uses to coincide with system 
energy requirements, setting DC-bus to buffer, while during low cost grid less energy is 
required and DC-bus is set in discharging. 

2. In all the RBC policies, cooling mode 1 is set if no demand exists. Otherwise, the three 
policies differ. 

3. RBC1. Cooling mode 2 is set for a PCM state of charge threshold. Otherwise, cooling 
mode 3 is set. Sorption is set depending on a buffer tank temperature threshold. 

4. RBC2. As RBC1 but a hysteresis control is added to the PCM threshold. 
5. RBC3. Cooling mode 2 is set if PCM state of charge is above a threshold of the demand. 

Otherwise, cooling mode 3 or 4 are set according to a threshold of the PCM state. 
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For each of the RBC policies a hyper-parameter optimization is applied in order to determine the 
optimal thresholds. Hyperopt python library (Bergstra, Yamins, & Cox, 2013) is used employing 
an adaptive Tree Parzen Estimator algorithm with 400 runs over the same training test set. Table 
1 (top row) shows results for Deep Learning Control (DLC) and RBC policies over the same test 
set. Clearly, DLC outperforms any of the tested RBC policy. 

Table 1. Operational cost (€) for different control policies 

 
Sell/Buy 
Control 

Policy 

DLC RBC1 RBC2 RBC3 

Cooling mode  3.4 6.7 7.6 11.1 

Cooling mode ✔ 6.2 9.6 9.9 10.3 

Heating mode ✔ 0.0 1.6 - - 

 

3.5 Sell/Buy energy control 

As mentioned before, energy retailers may not reward consumers for the amount of energy re-
injected that surpasses the consumed energy during a certain period. To simulate this scenario, 
we modify our control model as follows: 

• Sold energy is not rewarded if, during a reward period, it exceeds the bought energy in 
the corresponding tariff. 

• Two inputs are added to the control network in the form Sign(𝐵𝐸𝑝 − 𝑆𝐸𝑝), being 𝐵𝐸𝑝 

and 𝑆𝐸𝑝 the bought and sold energy during a reward period for tariff p (0 or 1), and 

being 

Sign(𝑥) = {
1  if  𝑥 ≥ 0,

−1  otherwise.
 

Figure 9 shows the control performance in this case. As expected, the performance is worse (6.2 
€), but the energy sold/bought for both tariffs, now, matches the required constraint, being well 
balanced (bottom plot). Looking at the behaviour of threshold E2 (mid plot), one can observe 
that charge/discharge modes for DC-bus are more frequent than if Figure 7, where control relies 
more often in buffer mode. This behaviour allows to partially compensate performance losses 
by increasing the amount of energy sold in tariff 1. 

Run RBC policies with the same sold/bought constraints for the reward function, gives a worse 
performance than our deep learning policy (Table 1). 

Finally, we train heating mode with 𝑇𝑠 = 30 min and ∆𝑡 = 15 sec as shown in Figure 10. As 
opposite in cooling mode, control decisions are simpler. There is a unique mode for heat pump, 
being activated when demand exists and reward is optimized by taking correct decisions in DC-
bus subsystem. We observe DC-bus discharging battery at peak tariffs periods by adjusting the 
E2 threshold, putting DC-bus in discharging mode. Actually, the system operation cost for test 
data is almost 0 €. 

It is worth to mention that in this case, ∆𝑡 is reduced to 15 sec because of the heat pump 
coefficient of performance, which is higher than in cooling mode, and taking ∆𝑡 = 1 min would 
exceed in many cases the required energy from demand. 



  Deliverable D4.3 

 
31 

 

 
Figure 9. Control performance with control for sold/bought energy in cooling mode 

As for the cooling mode, we implement a RBC policy, in this case, based on DC-bus battery state, 
that after being optimized their thresholds, gives a performance not too far from DLC (1.1 €) 
(Table 1 bottom row). This result is not surprising considering that for heating mode 
Mediterranean system control decisions are easier. 
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Figure 10. Control performance for 𝑻𝒔 = 30 min and ∆𝒕 = 1 min with control for sold/bought energy in heating 

mode
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4 Conclusions 

This document reports the description of the two BEMS optimisation processes implemented in 
the context of the thermal management of the HYBUILD buildings. These two software 
components allow to cover most of the energy operations performed inside the building for 
providing heating, cooling and DHW to ensure the comfort conditions required by the user while 
optimising the overall energy performances. ENG and UDL have been involved in the provision 
of these software tools. 

The optimisation process provided by ENG focuses on optimising the internal energy resources 
of the building, leveraging in particular on the storage systems, in order to provide flexibility 
services to entities outside the building itself, such as electric and district heating grid operators. 
The provision of this kind of services led to an economic reward that drives the multi-objective 
optimisation framework proposed by ENG. This BEMS optimiser indeed pursues different 
objectives along with the flexibility exploitation: it takes into account also the building 
inhabitants’ comfort and the economic management of the energy operation. This is performed 
by the implementation of a heuristic algorithm, the NSGA-II. 

UDL’s BEMS optimisation process deals with the high-level control strategy of the building 
aiming at minimising the expenditures afforded for providing the best comfort conditions to 
building users and avoid penalties. This takes into account all the appointed cost items related 
to the energy operation performed by the systems and devices installed inside the 
Mediterranean building. The optimisation process relies upon a reinforcement learning 
technique, in particular a DLC algorithm implementing a three-layer fully connected network. 

Both the BEMS optimisation processes have been designed on the basis of simplified models of 
the systems under control (addressing building and its systems and devices energy behaviours) 
and taking into account the operational modes defined for modelling the overall energy 
operations of the building in a simple and atomic information. These optimisation processes 
could be enhanced once that more detailed models could be easily integrated on their 
procedures without affecting their computational performances.  

These pieces of software are the core of the BEMS solution provided for the HYBUILD buildings. 
Their performances and the comparison on their result will be reported in the deliverable D4.4 
– “Report on system performance”. 
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6 Appendixes 

6.1 Data model and monitoring framework 

6.1.1 Data model 

The Entity Relationship Diagram of data model adopted for the BEMS optimisation of the ENG 
tool is presented here. For the sake of clarity, it is split in four figures (Figure 11 to Figure 14). 
The same figure can be asked to the authors of the deliverable or the Coordinator of the Project 
in original format.
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Figure 11. Entity Relationship Diagram of data model adopted for the ENG BEMS optimiser (1/4) 
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Figure 12. Entity Relationship Diagram of data model adopted for the ENG BEMS optimiser (2/4) 
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Figure 13. Entity Relationship Diagram of data model adopted for the ENG BEMS optimiser (3/4) 
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Figure 14. Entity Relationship Diagram of data model adopted for the ENG BEMS optimiser (4/4) 


