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ABSTRACT: With the diffusion of electric heating and cooling devices, coupling the electric and thermal systems in the 
residential sector is becoming attractive and could help to increase photovoltaic penetration. The heating and cooling needs 
of buildings correspond to an important component of the total energy consumption of the residential sector. Thus, it is 
important to properly design the thermal and electric systems accounting of the interactions from the first phases of the 
design process. In the design phase, detailed models implemented in dynamic simulation tools can be used for the sizing 
process of system components, but they hardly can be adopted in optimization algorithms due to the computational time 
required for each simulation. This is particularly true for multi-objective optimization algorithms, where usually a wide 
number of simulations is required. In this work, TRNSYS was used to train a machine learning model that is used in a 
multi-objective optimization with the final goal of improving the design of the thermal system and optimizing the KPIs of 
a coupled photovoltaic plus battery system. 
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1 INTRODUCTION 

In Europe, the residential sector accounts for 27% of 
the total energy consumptions and more than half is 
required for heating and cooling and domestic hot water 
preparation. Due to the diffusion of heat pumps and other 
electric devices, the coupling of the thermal and electric 
systems in hybrid systems is becoming more and more 
attractive and could be an important driver for the future 
installations of photovoltaics systems in the residential 
sector. The benefits of coupling photovoltaics system with 
heating and cooling devices was discussed in many studies 
[1], [2], [3]. Considering also the effect of climate changes 
[4], [5], in the recent years there is a growing interest 
related to cooling applications [6], [7]. Advanced controls 
to improve self-consumption were also investigated in 
many articles such as [8] and [9], however in many of these 
studies the size of the system components was usually 
considered fixed by the authors and not optimized. In 
many previous analysis, it was demonstrated how it is 
possible to apply optimization techniques for the design 
and sizing of photovoltaics and battery systems [10], [11], 
[12] leading to improved system design. In these studies,
related to design optimization, the electric demand was
often considered as an input for the optimization algorithm 
and the interaction between the thermal side and electric
side of the system was not considered. This approach is
acceptable if the designer is only interested in the
optimization of the electric system. However, the authors
recognized that when designing a hybrid system, it is
important to include from the design process the
interactions between the electric and thermal side of the
system, optimizing together the size of the electric and
thermal components and not as two separate systems. But
even if dynamic simulation software are more precise than 
grey or black box models [13], their complexity could
result in a process which is too computationally expensive
especially if included in an optimization algorithm. One
possible solution to reduce the computational time is to
simplify the models of the building and of the system as in
[14], [15]. In this paper we propose an approach similar to
the one presented in [16], where machine learning was
introduced to decrease the computational effort. The

machine learning model is trained to substitute the 
dynamic simulation in the optimization and unlock the 
possibility to use a multi-objective optimization algorithm. 
Finally, the dynamic model is used to check the results of 
the selected optimal configurations with a short-time step 
simulation. The method presented in this paper is applied 
to one of the reference cases of the Horizon 2020 project 
HYBUILD [17] that focuses on innovative hybrid 
electrical-thermal storage systems for the residential 
sector.        

2 METHOD 

 As described in the Introduction, the design of a 
complex hybrid thermo-electrical system using a dynamic 
model, may be complex and time-consuming. For this 
reason, the aim of this work is to propose an approach 
which is based on a multi-objective optimization able to 
design in the different parts of the system in a single 
process. As previously mentioned, the present 
methodology is applied to one of the reference case of the 
Horizon 2020 HYBUILD project, however it could be also 
adopted to different systems with a larger number of 
design variables. In this section we briefly present the 
project context and the hybrid system considered in the 
case-study. Then we introduce the proposed method 
defining the design variables, the objective functions and 
the adopted machine learning (ML) model.  

2.1 Hybrid system case study 
 The electric-thermal system considered in this paper is 
related to one of the reference building in the HYBUILD 
project. This European project has the aim to integrate 
advanced electric and thermal storage systems in 
residential building able to cooperate in order to not only 
fulfill the electrical or thermal demand of the final user but 
also to maximize the use of renewable and reduce the CO2 
emissions.  

Due to this purpose, the project proposes two different 
hybrid systems suitable to use in two different European 
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climates, i.e. Mediterranean and Continental. In this work 
we focus only on the system developed for the 
Mediterranean area. In particular, the building considered 
is a Single-Family House (SFH) built in the period 1980-
1990 and placed in the city of Athens that was selected as 
a reference location. The building is a two-floors house 
with a net area of 100 m2. According to the purpose of the 
HYBUILD project, the aim of the Mediterranean system 
is the covering of space cooling demand and to fulfill the 
requirement for the domestic hot water needs. Figure 1 
shows a simplified scheme of the hybrid system composed 
by the following sub-systems: 

• Solar thermal collector: the solar thermal 
collector sub-system is composed by Fresnel 
concentrating solar collector, buffer tank and the 
hydraulic equipment that allows the connection 
of the two components. The buffer tank is used 
for different purposes: to feed up the adsorption 
chiller, to charge the DHW tank and, although 
this last option for the sake of clarity is not 
reported in Figure 1, to ensure heating to the 
building exploiting the solar source when it is 
available.  

• Adsorption module: the adsorption machine 
uses as input the heat coming from the buffer 
tank to produce chilled water that is sent at the 
condenser side of the compression chiller 
rejecting heat through a dry cooler.  

• Compression chiller and PCM: the compression 
chiller is mainly devoted to the latent storage 
charge. If the operation constraints of the 
adsorption machine are not satisfied and at the 
same time the compression chiller operation is 
needed, there is the possibility to bypass the 
adsorption part and to connect directly the dry 
cooler to the condenser side of the compression 
chiller. There is also the possibility to bypass the 
latent storage and connect directly the 
compression chiller to the distribution circuit.  

• Distribution circuit: it is composed of fan coils 
that are used to ensure the desired indoor 
temperature. 

• Domestic hot water circuit: DHW circuit 
guarantees the correct flow of hot water to the 
users in the apartment. To exploit solar source 
also for DHW purposes, the DHW tank can be 
charged using the buffer tank. An electrical 
resistance placed inside the DHW tank is 
considered as a back-up element.  

• Electric system: a photovoltaic system 
composed by multi-crystalline modules 
connected in series, an inverter connected to the 
external grid and an electric battery considered 
ideal. 

 
The building and the systems described in the previous 
section, were modelled in TRNSYS [18], where the 
climate data are taken from the Meteornom database [19]. 
Each component of the system was modelled by standard 
(when available) or non-standard TRNSYS types with 
performance maps given directly by industrial partners or 
expertise in the modelling of the single component. The 
timestep used for the simulations is one minute, minimum 
requirement to well approximate the real operation of the 
studied system considering its complexity, the high 
number of components involved and, consequently, the 
high number of possible operational modes. Due to the 

complexity of the model and the simulation timestep, each 
simulation takes about an hour.  

 
Figure 1: simplified scheme of the hybrid electric-thermal 
system used as case-study. The scheme represents the 
Mediterranean reference case of the HYBUILD project. 
 
2.2. Optimization and machine learning model  
 As reference to the system in Figure 1, since the 
building was already defined, as well as the size of most 
of the other components, we focused on the design of four 
components of the system. For each of these components, 
we select a sizing variable which are: 

1. Number of solar thermal modules of the solar 
thermal system 

2. Number of modules for the PV system 
3. Number of battery cells for the electric storage 

system  
4. Diameter of the tank for the domestic hot water 

storage  
To obtain an optimized system from both the electric and 
thermal point of view, a multi-objective optimization 
algorithm was selected for the analysis. The considered 
four cost functions are: 

1. Maximization of self-consumption (SC), 
defined as the ratio between the self-consumed 
energy and the total energy produced by the 
photovoltaic system 

2. Maximization of self-sufficiency (SS), defined 
as ratio between the self-consumed energy and 
the total energy consumed 

3. Minimization of the cumulative electric energy 
consumed by the system (i.e. sum of the 
electrical consumptions of the compression 
chiller, dry cooler and circulating pumps.) 

4. Minimization of system cost 
 
Considering the computational burden of the TRNSYS 
model and its significant increase when the optimization is 
also performed, the idea introduced in this work is to adopt 
a machine learning model that could substitute the 
TRNSYS model in the optimization process. Thus, the 
dynamic model was used to create a dataset for the training 
of the machine learning model able to estimate three 
relevant indicators describing the performance of the 
system using as inputs the design variables. The machine 
learning model was then used in the optimization 
algorithm to size the components of the system reducing 
the computational time required. Finally, the white box 
model (e.g. TRNSYS model) was used to check the results 
in a dynamic simulation.  
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3 IMPLEMENTATION 
 
 This section describes the procedure to pass from the 
TRNSYS model to a machine learning model and how to 
run the optimization to size the components. A summary 
of the steps is represented in Figure 2. 
 
3.1 Creating the dataset 

To prepare the data required for the training of the 
machine learning model, a set of parametric simulations 
were done with TRNSYS. The parameters of the 
configurations simulated are the four design variables that 
we selected as optimization variables: the number of solar 
thermal modules installed, the capacity of the photovoltaic 
system, the capacity of the battery and the diameter of the 
domestic hot water storage. The idea was to create a 
database of inputs-outputs based on simulations to be used 
in the training phase of the machine learning model. A 
scheme of the workflow is reported in Figure 2. To create 
the set of configurations to be simulated an interval of 
acceptable values was defined for each design variable. 
Table I reports the intervals used. 

 
 

Table I: Intervals   
 
  Min Max 
Number of ST modules 1 3 
Number of PV modules 0 30 
Number of battery cells 0 1000 
DHW storage diameter [m] 0.4 0.8 
 
The statistical technique Latin hypercube sampling [20] 
was used to obtain the set of configurations to be simulated 
with TRNSYS. Latin hypercube sampling is a widely used 
technique to originate a quasi-random set of parameters 
sampling N different sets of parameters between the given 
intervals. In this case, we used 150 samples. To obtain the 
final dataset, TRNSYS was coupled with Python [21] to 
automatically run all the simulations. Since the 
Mediterranean reference case focuses on cooling, the 
simulations and the reported KPIs refer to the cooling 
season (period from beginning of May to beginning of 
October). The output of this process is a database of 150 
rows (different configurations) where the columns are the 
inputs (design variables) and outputs of the TRNSYS 
simulations in terms of cost functions (SC, SS, Etot). Initial 
costs of the plant are not included in this phase since they 
can be fully determined once the size of the components is 
known. The complete process lasted about 6 days. The 
dataset obtained was then divided in two sub-sets 
corresponding to the input (size of the components) and 
output arrays (SC, SS, Etot) to be used in the machine 
learning training phase. Since no nans data or outliers were 
identified in a first analysis, the only pre-processing step 
done was the use of the Standard Scaler implemented in 
scikit-learn [22]. According to the documentation, the 
Standard Scaler removes the mean and scales the features 
to unit variance. This step is needed to scale all inputs and 
avoid that large order of magnitude inputs dominate over 

smaller scale inputs in the training process.   The formula 
used in the scaling process is: 
 

 𝑧𝑧 =   (𝑥𝑥 − 𝑢𝑢)/𝑠𝑠 (1 
 
where z is the scaled value, x is the original value, u is the 
mean of the feature and s is the standard deviation.  
 
3.2 Training and testing 
 Between the different algorithm tested, the best 
performance were obtained with a Random Forest 
Regressor [23]. The basic idea behind Random Forest is to 
build multiple decision trees and obtain a more stable and 
accurate model averaging the predictions of all the trees. 
To significantly improve the performances, one regressor 
per target was trained with the MultiOutputRegressor 
function implemented in scikit-learn. Since the dataset is 
not huge, the 10-fold cross validation method was selected 
for the validation of the model. Thus, the dataset was 
divided in 10 subsets and the model trained 10 times. For 
each training, 9 folds were used for training and the 
remaining one for testing. Finally, the accuracy of the 
model was estimated as the average score of the 10 tests. 
The most important advantage of using K-fold cross 
validation is that it gives a more stable estimation of the 
accuracy of the model to predict never seen data with 
respect to other methods such as R2.  
 
3.3 Optimization 
 The algorithm used for the optimization of the design 
variables is the NSGA-II, a widely used multi-objective 
evolutionary algorithm [24]. This algorithm was chosen 
for its set-up simplicity and because it allows the user to 
optimize simultaneously all objectives returning a set of 
optimal solutions that can be analysed at the end of the 
optimization process. In the optimization process, a mask 
was applied on the design variables to obtain only integer 
values for the number of ST modules, PV modules and 
battery cells. The diameter of the domestic hot water 
storage was considered as a continuous variable. All the 
steps related to optimization were implemented with the 
pymoo [25] Python library using the default settings, a 
population of 100 individuals and a maximum of 200 
generations. For each individual, the algorithm calculates 
the target functions SC, SS and the total consumed energy 
with the machine learning model and calculates the initial 
cost of the configuration. To calculate the initial cost of 
each solution, the following assumptions were considered:  

• cost of ST modules = 400 €/m2 
• cost of PV modules = 1500 €/kWp 
• cost of battery = 670 €/kWh 
• cost of the DHW storage = 2000 €/m3.  

The initial cost of the system is calculated as the sum of 
each component cost obtained multiplying the unit cost by 
the size.    
 
 
4 RESULTS AND DISCUSSION 
 
 As discussed in the previous paragraph, the accuracy 
of the machine learning model to predict the output of 
TRNSYS was tested with a 10-fold cross validation. The 
average accuracy of the model was estimated equal to 
96.4±2.1% and was considered acceptable for the goals of 
this work. Figure 3 represents the goodness of the 
prediction with respect to the values obtained with 
TRNSYS. Since the accuracy of the model depends on the 

Figure 2: workflow of the training process 
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goodness of the training process, the training and testing 
phase were repeated using an increasing percentage of the 
data available randomly sampled from the initial database 
with the goal of investigate the impact of the number of 
configurations used in the training phase on the accuracy. 
As reported in Figure 4, 60% of the initial database is 
enough to train a model with a good accuracy. In this case, 
it means 90 simulations: the ratio between the number of 
simulations required and the number of design variables is 
thus equal to 22.5,  confirming the value found in  [16]. 
However, the following pages refers to a model trained 
using the entire available database. The trained model was 
finally used in the multi-objective optimization algorithm 
to predict at each step the self-consumption and self-
sufficiency indexes and the total energy consumed by the 
system for the considered period. The result of the 
optimization is a set of Pareto-optimal solutions 
represented in Figure 5. At this point the designer can 
choose among the final set of solutions those that he 
considers more relevant and proceed with further 
evaluations.  
The authors selected only the solutions with SC and SS 
greater than 40% to avoid undersized or oversized PV 
systems. The filtered set was then reordered by initial cost 
in ascending order. Finally, the solutions reported in Table 
II were selected and simulated with TRNSYS. They are 
highlighted in green in Figure 5. This step is needed to 
verify with a dynamic simulation that the optimized 
configurations of the plant satisfy the comfort requirement 
of the building. In fact, the system was optimized using as 
target functions the cumulative indexes of self-
consumption, self-sufficiency and consumed energy but 
there is no guarantee that the plant works as expected even 
for a small timestep simulation.  
 
 

 
Figure 3: machine learning model (ML) predictions 
compared with TRNSYS simulations. The plot confirms 
the goodness of the training process and the absence of 
outliers. 
 
 

 
 
Figure 4: accuracy of the model compared to the 
percentage of data used in the training phase. 60% of the 
dataset could be enough to obtain an accurate model. 
The configurations selected for testing were simulated and 

the results compared to those obtained with the machine 
learning model. The comparison is reported in Table III. 
Considering that the approach presented in this work is 
intended as a support for the designer in the first phases of 
the design process of a complex hybrid system, results 
presented in Table III were considered acceptable in terms 
of predictions of the indicators. Moreover, the dynamic 
simulations confirmed that the cooling set point of the 
internal air temperature is guaranteed for all the three 
configurations for the entire cooling period. Also, the 
DHW demand was always satisfied.  
 

(a) 

 
(b) 

 

(c) 
 

 
(d) 

 
Figures 5: Set of optimal configurations: due to the 
number of objective functions multiple plots are needed to 
represent the solution. The solutions selected for the 
dynamic simulations were highlighted in green. 
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Table II: final configurations selected for detailed 
dynamic simulation   
 
Configuration  1 2 3 
Number of ST modules 1 3 2 
Number of PV modules 12 13 19 
Number of battery cells 117 205 106 
DHW storage diameter [m] 0.50 0.58 0.79 
SC [%] 0.46 0.49  0.46 
SS [%]      0.48    0.47     0.47 
Etot [kWh]      2412    2303        2331 
Initial costs [€]    11465      32438      23831 
 
Table III: comparison of the objective functions obtained 
with TRNSYS and ML. Values confirms that the ML 
model can estimate well the KPIs selected. 
 
Configuration 1 SC SS Etot [kWh] 
TRNSYS  0.46 0.44 2437 
ML  0.46 0.47 2412 
Configuration 2  
TRNSYS  0.50 0.52 2368 
ML  0.49 0.48 2303 
Configuration 3  
TRNSYS  0.32 0.50 2371 
ML  0.29 0.50 2333 
 
Comparing the computational time required for the 
optimization process with and without the adoption of 
machine learning techniques, it is possible to highlight the 
great advantage of the approach used in this work. In fact, 
according to the number of simulations required, using 
directly TRNSYS in the optimization algorithm would 
have required more than 2 years to end the process. On the 
contrary, the approach with machine learning can be 
completed in less than 7 days, considering the time 
required for training, optimization and simulation of the 
most interesting solutions selected by the designer. 
Additionally, computational time could have been reduced 
even more as shown in Figure 4. 
 
 
5 CONCLUSIONS 
 
 In this paper, the authors demonstrated how it is 
possible to use machine learning to speed up the 
optimization process in the first phases of the design of a 
hybrid thermal and electric system of a residential 
building. In some cases, when the number of design 
variables or the number of objective functions is large, 
using a simplified or a black box model could be the only 
solution reasonable from the computational point of view. 
The advantage of using machine learning in this kind of 
optimization problems is that it could replace TRNSYS in 
the calculation of the target functions reducing drastically 
the computational time. This step unlocks the possibility 
to use a multi-objective optimization algorithm which 
typically requires a great number of iterations to solve a 
complex problem. The result of the optimization is a set of 
optimal solutions that the designer can further evaluate to 
refine the design process. The approach used in this work 
demonstrate that relevant KPIs such as SC and SS, often 
needed in the design phase of a residential PV system, can 
be estimated well with machine learning. This opens the 
possibility to optimize together the PV plus battery system 
and the thermal side of the plant (potentially also the 

building characteristics could be included as design 
variable). On the other side, the dynamic model is required 
to create the training set and at the end of the optimization 
to check with a small simulation timestep that the comfort 
requirements of the buildings are satisfied. In the next 
years, where the installation of photovoltaics coupled with 
electric heating or cooling devices is expected to increase, 
including this approach in the first phases of the design 
process could lead to an improvement of the performances 
and economic outcome of hybrid systems.       
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